3.577 \(\int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx\)

Optimal. Leaf size=116 \[ \frac {2 a \left (a^2+b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {6 b \left (5 a^2+b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}+\frac {8 a b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d} \]

[Out]

6/5*b*(5*a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*
(a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+8/5*a*b^2*si
n(d*x+c)*cos(d*x+c)^(1/2)/d+2/5*b^2*(a+b*cos(d*x+c))*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2793, 3023, 2748, 2641, 2639} \[ \frac {2 a \left (a^2+b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {6 b \left (5 a^2+b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}+\frac {8 a b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^3/Sqrt[Cos[c + d*x]],x]

[Out]

(6*b*(5*a^2 + b^2)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*a*(a^2 + b^2)*EllipticF[(c + d*x)/2, 2])/d + (8*a*b^2
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(5*d) + (2*b^2*Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])*Sin[c + d*x])/(5*d)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2793

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n)), x] + Dist[1/(d
*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d*(m + n) + b^2*(b*c*(m - 2) + a*d
*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n -
 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] ||
 (EqQ[a, 0] && NeQ[c, 0])))

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx &=\frac {2 b^2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x)) \sin (c+d x)}{5 d}+\frac {2}{5} \int \frac {\frac {1}{2} a \left (5 a^2+b^2\right )+\frac {3}{2} b \left (5 a^2+b^2\right ) \cos (c+d x)+6 a b^2 \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {8 a b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 b^2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x)) \sin (c+d x)}{5 d}+\frac {4}{15} \int \frac {\frac {15}{4} a \left (a^2+b^2\right )+\frac {9}{4} b \left (5 a^2+b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {8 a b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 b^2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x)) \sin (c+d x)}{5 d}+\left (a \left (a^2+b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{5} \left (3 b \left (5 a^2+b^2\right )\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {6 b \left (5 a^2+b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a \left (a^2+b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 b^2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x)) \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.40, size = 84, normalized size = 0.72 \[ \frac {2 \left (3 \left (5 a^2 b+b^3\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 a \left (a^2+b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (5 a+b \cos (c+d x))\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^3/Sqrt[Cos[c + d*x]],x]

[Out]

(2*(3*(5*a^2*b + b^3)*EllipticE[(c + d*x)/2, 2] + 5*a*(a^2 + b^2)*EllipticF[(c + d*x)/2, 2] + b^2*Sqrt[Cos[c +
 d*x]]*(5*a + b*Cos[c + d*x])*Sin[c + d*x]))/(5*d)

________________________________________________________________________________________

fricas [F]  time = 1.83, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right ) + a^{3}}{\sqrt {\cos \left (d x + c\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 0.68, size = 376, normalized size = 3.24 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 b^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (20 b^{2} a +8 b^{3}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-10 b^{2} a -2 b^{3}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+5 b^{2} a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x)

[Out]

-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*b^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+(
20*a*b^2+8*b^3)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-10*a*b^2-2*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2
*c)+5*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+
5*b^2*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-3*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3)/(-2*si
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

mupad [B]  time = 0.88, size = 125, normalized size = 1.08 \[ \frac {2\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,a^2\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a\,b^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a\,b^2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{d}-\frac {2\,b^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))^3/cos(c + d*x)^(1/2),x)

[Out]

(2*a^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*a^2*b*ellipticE(c/2 + (d*x)/2, 2))/d + (2*a*b^2*ellipticF(c/2 + (d*
x)/2, 2))/d + (2*a*b^2*cos(c + d*x)^(1/2)*sin(c + d*x))/d - (2*b^3*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([
1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**3/cos(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________